@PHDTHESIS{ 2023:307837355, title = {METABOLOMIC STUDY OF EXTRACTS OF BRAZILIAN GEOPROPOLIS BY UHPLC-HRMS (ORBITRAP), 1H AND 13C NMR, AND GC-MS}, year = {2023}, url = "http://tede.unicentro.br:8080/jspui/handle/jspui/2152", abstract = "The stingless bees (Meliponini) make propolis by mixing resins, waxes, and oils from vegetal sources, with salivary secretions rich in enzymes. Small portions of soil particles are added to the mixture to give geopropolis the needed consistence to be used as part of many internal and external hive structures. In order to protect the colony from external pathogens, geopropolis present diverse pharmacological effects, especially antibiotic, antiviral, antifungal. Commonly in poor countries, communities of less assisted rural workers, and indigenous people benefit from these characteristics of geopropolis. Its chemical composition is complex and related to its geographic origin, which botanic sources are available, and the species of the stingless bees. In general, geopropolis is rich in flavonoids, phenolic compounds, phenylpropanoids, sugars, and lipids. Despite the importance of this natural product, studies on geopropolis are still scarce and focused on punctual characteristics, on few species, rather than on a broader approach on larger numbers of species. The objective of this study was to employ metabolomics and lipidomics approaches, through chromatographic hyphenated techniques, and NMR in order to investigate the composition and possible biomarkers of geopropolis. Firstly, ethanolic extracts of geopropolis (EEGs) from 14 species and two sub-species of Brazilian stingless bees, from five Brazilian States (Paraná, Pernambuco, Maranhão, São Paulo, and Sergipe) were made. Samples were given by local beekeepers. The EEGs were kept in freezer until transported, at room temperature, to the Proteomics and Metabolomics Facility at London Institute of Medical Sciences (Imperial College London, campus Hammersmith), United Kingdom. The mass fingerprints of the EEGs were acquired using a high-resolution mass spectrometer (HRMS, Orbitrap), firstly by direct flow injection technique (FIA) and analysed using multivariate analysis such as PCA and HA. Also, possible correlations between the mass fingerprint data and total flavonoid content (TFC) and antioxidant capacity in terms of quercetin equivalent (DPPH) and ascorbic acid equivalents (VCEAC) were assessed by PLS regression. After FIA, EEGs were injected into an UHPLC-HRMS and subsequent partition with water and chloroform allowed the investigation of the CHCl3 lipidic rich fraction. The water-soluble fraction was derivatised and analysed by GC-MS. In this way, the potentialities of each analytical technique were explored to make it possible a comprehensive analysis of geopropolis. Using GC-MS identification was based on spectral data comparison with the instrument internal library, also the calculated retention index. In the case of UHPLC-HRMS compound annotation was based on sequential mass spectrometry experiments and carried out by the Compound Discoverer V. 3.3 (Thermo) software, using specialised local and online libraries. The composition analysis by UHPLC-HRMS and GC-MS revealed the presence of flavonoids, sugars, esters, terpenes, phenolics, organic acids, and phenylpropanoids. The lipidomic analysis revealed the presence of fatty acids, fatty acyls, phenolic lipids, steroids, and resorcinols. Exploratory multivariate analysis indicated that bee species and genus strongly affect the chemical composition of geopropolis as well as the geographical origin. The extension of the later factor depends on the bee specie. On one hand, it was observed that geopropolis from Tetragonisca angustula have similar chemical composition regardless of geographical origin indicating that this bee gathers similar vegetal resins throughout Brazil to make its propolis. On the other hand, Melipona quadrifasciata and Melipona marginata seen to have generalist collection patterns as their geopropolis have a more variable composition depending on the geographical origin. NMR analysis of the CDCl3 extract (CEG) of geopropolis allowed confirmation of chemical classes already identified by chromatography hyphenated techniques and also corroborated the importance of bee species and geographical origin on the chemical composition of geopropolis. Finally, the application of PLS models to FIA mass fingerprints, using less than 3 latent variables, produced accurate models with low values for the errors of calibration and prediction (RMSEC < 0.79 mg.g-1; RMSECV < 2.662 mg.g-1; RMSEP < 1,0448 mg.g-1). Additionally, acceptable determination coefficients (0.6613 < R² < 0.8815) indicated that mass fingerprints accurately estimate TFC and antioxidant capacity of geopropolis.", publisher = {Universidade Estadual do Centro-Oeste}, scholl = {Programa de Pós-Graduação em Química (Doutorado)}, note = {Unicentro::Departamento de Ciências Exatas e de Tecnologia} }