???jsp.display-item.social.title??? |
![]() ![]() |
Please use this identifier to cite or link to this item:
http://tede.unicentro.br:8080/jspui/handle/jspui/1312
Tipo do documento: | Dissertação |
Título: | Modelagem do crescimento e produção utilizando máquina de vetor de suporte e redes neurais artificiais |
Título(s) alternativo(s): | Modeling growth and production using a support vector machine and artificial neural networks |
Autor: | Cordeiro, Márcio Assis ![]() |
Primeiro orientador: | Arce, Julio Eduardo |
Primeiro coorientador: | Guimarães, Fabiane Aparecida Retslaff |
Segundo coorientador: | Bonete, Izabel Passos |
Resumo: | Este estudo teve por objetivo avaliar o desempenho de redes neurais artificiais (RNAs) e máquinas de vetor de suporte (MVS) na modelagem de variáveis dendrométricas em povoamentos de eucalipto. Os dados utilizados são oriundos de plantios comerciais não desbastados, localizados em quatro municípios localizados da mesorregião sul do estado do Amapá e foram disponibilizados pela empresa AmcelAmapá florestal e celulose S/A. São provenientes de parcelas permanentes, parcelas temporárias e inventário pré-corte, com idades variando entre 22 e 88 meses. Foram ajustados modelos hipsométricos, volumétricos e de crescimento e produção consagrados na literatura, e comparados com a técnica de máquina de vetor de suporte e de redes neurais artificiais. Para cada tipo de modelagem, os dados foram divididos aleatoriamente em dois grupos, 80% dos dados para ajuste/treinamento e 20% para validação/generalização dos mesmos. As mesmas variáveis dendrométricas utilizadas pelos modelos de regressão, foram utilizadas pelas MVS e RNA. Para o treinamento e generalização das máquinas de vetor de suporte (MVS), foram utilizadas quatro configurações, formadas a partir de duas funções de erro e duas funções de kernel. Para configuração, treinamento e generalização das RNAs, foi utilizado o software Neuro 4.0, no qual foram utilizadas configurações de redes do tipo Adaline (Adaptive Linear Element); Multilayer Perceptron (MLP) e Funções de Base Radial (Radial Basis Function-RBF). Antecedendo a modelagem do crescimento e produção, foi realizado o ajuste das curvas de sítio e a classificação da capacidade produtiva, pelo método da curvaguia. Para tal foram avaliados dois modelos não lineares e, em seguida foi avaliada a estabilidade das curvas de sítio nas parcelas que tiveram mais de três medições. Na modelagem do crescimento e produção, utilizou-se o índice de sítio estimado pela equação selecionada. A qualidade dos ajustes dos modelos de regressão, e das metodologias utilizando RNAs e MVS, foram avaliadas utilizando-se o coeficiente de correlação entre os valores observados e estimados (ryŷ), a raiz quadrada do erro médio, expresso em porcentagem da média (RMSE%), análise gráfica dos resíduos (Res%). Máquinas de vetor de suporte e redes neurais artificiais apresentaram bom desempenho nas estimativas de altura, volume individual e nas projeções de área basal e volume por hectare, demonstrando serem técnicas promissoras para aplicações na área de mensuração e manejo florestal. |
Abstract: | This study aimed to evaluate the performance of artificial neural networks (ANNs) and support vector machines (SVM) in the modeling of dendrometric variables in eucalyptus stands. The data used come from non-thinned commercial plantations, located in four municipalities located in the southern mesoregion of the state of Amapá and were made available by the company Amcel-Amapá florestal e celulose S / A. They come from permanent plots, temporary plots and pre-cut inventory, with ages varying between 22 and 88 months. Hypsometric, volumetric and growth and production models established in the literature were adjusted, and compared with the support vector machine technique and artificial neural networks. For each type of modeling, the data were randomly divided into two groups, 80% of the data for adjustment / training and 20% for validation / generalization. The same dendrometric variables used by the regression models were used by the MVS and ANNs. For the training and generalization of support vector machines (SVM), four configurations were used, formed from two error functions and two kernel functions. For configuration, training and generalization of the ANNs, Neuro 4.0 software was used, in which configurations of networks of the Adaline type (Adaptive Linear Element) were used; Multilayer Perceptron (MLP) and Radial Basis Functions (Radial Basis Function-RBF). Prior to the growth and production modeling, the site curves were adjusted and the production capacity was classified using the guide curve method. For that, two non-linear models were evaluated and then the stability of the site curves in the plots that had more than three measurements was evaluated. In modeling growth and production, the site index estimated by the selected equation was used. The quality of the adjustments of the regression models, and of the methodologies using ANNs and SVM, were evaluated using the correlation coefficient between the observed and estimated values (ryŷ), the square root of the mean error, expressed as a percentage of the mean (RMSE %), graphical analysis of residues (Res%). Support vector machines and artificial neural networks performed well in the estimates of height, individual volume and in the basal area and volume per hectare projections, proving to be promising techniques for applications in the area of measurement and forest management. |
Palavras-chave: | Modelagem do crescimento e produção máquina de vetor de suporte redes neurais artificiais Growth and production modeling support vector machine artificial neural networks |
Área(s) do CNPq: | CIENCIAS AGRARIAS::RECURSOS FLORESTAIS E ENGENHARIA FLORESTAL RECURSOS FLORESTAIS E ENGENHARIA FLORESTAL::MANEJO FLORESTAL |
Idioma: | por |
País: | Brasil |
Instituição: | Universidade Estadual do Centro-Oeste |
Sigla da instituição: | UNICENTRO |
Departamento: | Unicentro::Departamento de Ciências Florestais |
Programa: | Programa de Pós-Graduação em Ciências Florestais |
Citação: | Cordeiro, Márcio Assis. Modelagem do crescimento e produção utilizando máquina de vetor de suporte e redes neurais artificiais. 2020. 122 f. Dissertação (Programa de Pós-Graduação em Ciências Florestais - Mestrado) - Universidade Estadual do Centro-Oeste, Irati-PR. |
Tipo de acesso: | Acesso Aberto |
URI: | http://tede.unicentro.br:8080/jspui/handle/jspui/1312 |
Data de defesa: | 11-Mar-2020 |
Appears in Collections: | Programa de Pós-Graduação em Ciências Florestais |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Márcio Assis Cordeiro.pdf | MÁRCIO ASSIS CORDEIRO | 6,93 MB | Adobe PDF | ![]() Download/Open Preview |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.